Sperm DNA Cryodamage in Domestic and Farm Animals: Detection Methods and Ways of DNA Integrity Improvement

Authors

DOI:

https://doi.org/10.15407/cryo32.03.171

Keywords:

sperm cryopreservation, DNA fragmentation, sperm of domestic animals, oxidative stress, antioxidants

Abstract

Here, we have presented the data describing the cryopreservation impact on DNA status of domestic and farm animal sperm, and described the main causes of DNA fragmentation and methods of its detection and DNA integrity preservation. The current methods to identify the DNA fragmentation rate have been shown to be quite efficient, but the choice for the optimal way is stipulated by animal species. The oxidative stress caused by an increased content of reactive oxygen species was recognized as the main mechanism in DNA cryodamage. To prevent this negative effect on germ genetic material, many protective media and rehabilitation solutions supplemented with antioxidants (non-enzymatic, enzymatic compounds, and nanoparticles) have been developed. Thus, determining the sperm DNA fragmentation rate and maintaining its integrity are the necessary steps to improve the efficiency of domestic animal gamete cryopreservation as a part of reproductive technologies.

Probl Cryobiol Cryomed 2022; 32(3): 172–182

Author Biographies

Taisiia O. Yurchuk, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryobiology of Reproductive System

Olena V. Pavlovich, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryobiology of Reproductive System

Maryna P. Petrushko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryobiology of Reproductive System

References

Abdelnour SA, Hassan MAE, Mohammed AK, et al. The effect of adding different levels of curcumin and its nanoparticles to extender on post-thaw quality of cryopreserved rabbit sperm. Animals. [Internet] 2020 Aug 26 [cited 2021 Sep 21]; 10(9):1508. Available from: https://www.mdpi.com/2076-2615/10/9/1508/htm CrossRef

Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. [Internet] 2005 Jul 14 [cited 2021 Aug 21]; 3:28. Available from: https://rbej.biomedcentral.com/articles/10.1186/1477-7827-3-28 CrossRef

Ahmad Z, Ali L, Ahmed H, et al. Superoxide dismutase in extender improves the in vitro quality and in vivo fertility of cryopreserved water buffalo (Bubalus bubalis) spermatozoa. Cryoletters. 2020; 41(4): 194-201. PubMed

Ali Hassan H, Domain G, Luvoni GC, et al. Canine and feline epididymal semen-A plentiful source of gametes. Animals. Internet] 2021 Oct 14 [cited 2021 Sep 21]; 11(10): 2961. Available from: https://www.mdpi.com/2076-2615/11/10/2961 CrossRef

Bansal AK, Bilaspuri GS. Antioxidant effect of vitamin E on motility, viability and lipid peroxidation of cattle spermatozoa under oxidative stress. Anim Sci Pap Rep. 2009; 27(1): 5-14.

Bansal AK, Bilaspuri GS. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int. [Internet] 2010 Sep 07 [cited 2021 Sep 11] 2011:686137. Available from: https://www.hindawi.com/journals/vmi/2011/686137/ CrossRef

Bernstein AD, Petropavlovsky VV. [Effect of non-electrolytes on viability of spermatozoa]. Bjull Eksp Biol Med. 1937; 3: 41-3. Russian.

Brito MM, Angrimani DSR, Rui BR, et al. Effect of senescence on morphological, functional and oxidative features of fresh and cryopreserved canine sperm. Aging Male. 2020; 23(4): 279-86. CrossRef

Capanna E. Lazzaro Spallanzani: At the roots of modern biology. J Exp Zool. 1999; 85: 178-96. CrossRef

Chatdarong K. Retained fertilizing capability in cryopreserved feline spermatozoa. Reprod Domest Anim. 2017; 52(2): 261-4. CrossRef

Chelucci S, Pasciu V, Succu S, et al. Soybean lecithin-based extender preserves spermatozoa membrane integrity and fertilizing potential during goat semen cryopreservation. Theriogenology. 2015; 83(6): 1064-74. CrossRef

Cortés-Gutiérrez EI, Crespo F, Serres-Dalmau C, et al. Assessment of sperm DNA fragmentation in stallion (Equus caballus) and donkey (Equus asinus) using the sperm chromatin dispersion test. Reprod Domest Anim. 2009; 44(5): 823-8. CrossRef

Evenson DP. The Sperm Chromatin Structure Assay (SCSA) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci. 2016; 169: 56-75. CrossRef

Fernández-Santos MR, Domínguez-Rebolledo AE, Esteso MC, et al. Catalase supplementation on thawed bull spermatozoa abolishes the detrimental effect of oxidative stress on motility and DNA integrity. Int J Andr. 2009; 32(4): 353-9. CrossRef

Flores E, Cifuentes D, Fernández-Novell JM, et al. Freeze-thawing induces alterations in the protamine-1/DNA overall structure in boar sperm. Theriogenology. 2008; 69(9): 1083-94. CrossRef

Forouzanfar M, Abid A, Hosseini SM, et al. Supplementation of sperm cryopreservation media with cell permeable superoxide dismutase mimetic agent (MnTE) improves goat blastocyst formation. Cryobiology. 2013; 67(3): 394-7. CrossRef

Fraser L, Strzezek J. Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing-thawing? Theriogenology. 2007; 68(2): 248-57. CrossRef

Galarza DA, López-Sebastián A, Woelders H, et al. Two-step accelerating freezing protocol yields a better motility, membranes and DNA integrities of thawed ram sperm than three-steps freezing protocols. Cryobiology. 2019; 91: 84-9. CrossRef

Gosálvez J, López-Fernández C, Fernández JL, et al. Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol Reprod Dev. 2011; 78: 951-61. CrossRef

Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997; 20(2): 61-9. CrossRef

Gu N-H, Zhao W-L, Wang G-S, Sun F. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod Biol Endocrinol. [Internet] 2019 Aug 15 [cited 2021 Apr 30]; 17: 66. Available from: https://rbej.biomedcentral.com/articles/10.1186/s12958-019-0510-y CrossRef

Guerriero G, Trocchia S, Abdel-Gawad FK, Ciarcia G. Roles of reactive oxygen species in the spermatogenesis regulation. Front Endocrinol (Lausanne). [Internet] 2014 Apr 22 [cited 2021 Apr 30]; 5: 56. Available from: https://www.frontiersin.org/articles/10.3389/fendo.2014.00056/full CrossRef

Gürler H, Malama E, Heppelmann M, et al. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology. 2016; 86(2): 562-71. CrossRef

Homa ST, Vessey W, Perez-Miranda A, et al. Reactive oxygen species (ROS) in human semen: determination of a reference range. J Assist Reprod Genet. 2015; 32(5): 757-64. CrossRef

Ismail AA, Abdel-Khalek AE, Khalil WA, et al. Effects of mint, thyme, and curcumin extract nanoformulations on the sperm quality, apoptosis, chromatin decondensation, enzyme activity, and oxidative status of cryopreserved goat semen. Cryobiology. 2020; 97: 144-52. CrossRef

Khalil WA, El-Harairy MA, Zeidan AE, et al. Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology. 2019; 126: 121-7. CrossRef

Kopeika EF, Petrushko MP, Piniaiev VI, et al. Cryopreservation of reproductive cells and embryos of laboratory, agricultural and wild animals. Probl Cryobiol Cryomed. 2019; 29 (1): 3-18. CrossRef

Kritaniya D, Yadav S, Swain DK, et al. Freezing-thawing induces deprotamination, cryocapacitation-associated changes; DNA fragmentation; and reduced progesterone sensitivity in buck spermatozoa. Anim Reprod Sci. [Internet] 2020 Oct 16 [cited 2021 Sep 30]; 223:106628. Available from: https://www.sciencedirect.com/science/article/pii/S0378432020305005 CrossRef

Kumar H, Mahmood S. The use of fast acting antioxidants for the reduction of cow placental retention and subsequent endometritis. Ind J Anim Sci. 2001; 71(7): 650-3.

Kunkitti P, Sjödahl A, Bergqvist AS, et al. Comparison of DNA fragmentation assay in frozen-thawed cat epididymal sperm. Reprod Domest Anim. 2016; 51(4): 618-22. CrossRef

Lamirande de E, Jiang H, Zini A, et al. Reactive oxygen species and sperm physiology. Rev Reprod. 1997; 2(1):48-54. CrossRef

Lee CH, Cho YH. Aspects of mammalian spermatogenesis: electrophoretical analysis of protamines in mammalian species. Mol Cells. 1999; 9(5): 556-9. PubMed

López-Fernández C, Crespo F, Arroyo F, et al. Dynamics of sperm DNA fragmentation in domestic animals II. The stallion. Theriogenology. 2007; 68(9): 1240-50. CrossRef

López-Fernández C, Johnston SD, Fernández JL, et al. Fragmentation dynamics of frozen-thawed ram sperm DNA is modulated by sperm concentration. Theriogenology. 2010; 74(8): 1362-70. CrossRef

Luvoni GC, Morselli MG. Canine epididymal spermatozoa: a hidden treasure with great potential. Reprod Dom Anim. 2017; 52(2): 197-201. CrossRef

Martins CF, Dode MN, Báo SN, Rumpf R. The use of the acridine orange test and the TUNEL assay to assess the integrity of freeze-dried bovine spermatozoa DNA. Genet Mol Res. 2007; 6(1): 94-104. PubMed

Martínez-Pastor F, Fernández-Santos MR, Domínguez-Rebolledo ÁE, et al. Biology of reproduction group. DNA status on thawed semen from fighting bull: a comparison between the SCD and the SCSA tests. Reprod Dom Anim. 2009; 44: 424-31. CrossRef

McPherson SM, Longo FJ. Localization of DNase I-hypersensitive regions during rat spermatogenesis: stage-dependent patterns and unique sensitivity of elongating spermatids. Mol Reprod Dev. 1992; 31(4): 268-79. CrossRef

Mokarizadeh A, Rezvanfar M-A, Dorostkar K, et al. Mesenchymal stem cell derived microvesicles: trophic shuttles for enhancement of sperm quality parameters. Reprod Toxicol. 2013; 42: 78-84. CrossRef

Moustafa MH, Sharma RK, Thornton J, et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004; 19(1): 129-38. CrossRef

Ntemka A, Tsousis G, Brozos C, et al. Breed differences of bull frozen-thawed semen. Reprod Domest Anim. 2016; 51(6): 945-52. CrossRef

Ortiz I, Urbano M, Dorado J, et al. Comparison of DNA fragmentation of frozen-thawed epididymal sperm of dogs using sperm chromatin structure analysis and sperm chromatin dispersion test. Anim Reprod Sci. 2017; 187: 74-8. CrossRef

Pavlovych O, Hapon H, Yurchuk T, et al. Ultrastructural and functional characteristics of human spermatozoa after cryopreservation by vitrification. Probl Cryobiol Cryomed. 2020; 30(1): 24-33. CrossRef

Рolge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification at low temperatures. Nature. 1949; 164: 666-7. CrossRef

Polge C, Rowson LEA. Fertilizing capacity of bull spermatozoa after freezing at -79 °C. Nature. 1952; 169: 626-7. CrossRef

Reed ML, Ezeh PC, Hamic A, et al. Soy lecithin replaces egg yolk for cryopreservation of human sperm without adversely affecting post thaw motility, morphology, sperm DNA integrity, or sperm binding to hyaluronate. Fertil Steril. 2009; 92(5): 1787-90. CrossRef

Ribas-Maynou J, Garcia-Bonavila E, Hidalgo CO, et al. Species-specific differences in sperm chromatin decondensation between eutherian mammals underlie distinct lysis requirements. Front Cell Dev Biol. [Internet] 2021 Apr 30 [cited 2021 Sep 30]; 9: 669182. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2021.669182/full CrossRef

Rui BR, Angrimani D, Bicudo LC, et al. A fast, low-cost and efficient method for the diagnosis of sperm DNA fragmentation in several species. Reprod Domest Anim. 2018; 53(1): 171-5. CrossRef

Saadeldin IM, Khalil WA, Alharbi MG, et al. The current trends in using nanoparticles, liposomes, and exosomes for semen cryopreservation. animals. Animals [Internet] 2020 Dec 3 [cited 2021 Sep 30] ; 10(12): 2281. Available from: https://www.mdpi.com/2076-2615/10/12/2281 CrossRef

Sabés-Alsina M, Johannisson A, Lundeheim N, et al. Effects of season on bull sperm quality in thawed samples in northern Spain. Vet Rec. [Internet] 2017 Mar 11 [cited 2021 Sep 11]; 180(10):251. Available from: https://bvajournals.onlinelibrary.wiley.com/doi/abs/10.1136/vr.103897 CrossRef

Sakkas D, Mariethoz E, Manicardi G, et al. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999; 4(1): 31-7. CrossRef

Salamon S, Maxwell WM. Storage of ram semen. Anim Reprod Sci. 2000; 62: 77-111. CrossRef

Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002; 23(6): 737-52. PubMed

Santiani A, Evangelista S, Valdivia M, et al. Effect of the addition of two superoxide dismutase analogues (tempo and tempol) to alpaca semen extender for cryopreservation. Theriogenology. 2013; 79(5): 842-6. CrossRef

Serafni R, Romano JE, Varner DD, et al. Sperm DNA assays and their relationship to sperm motility and morphology in bulls (Bos taurus). Anim Reprod Sci. 2015; 159: 77-86. CrossRef

Serafini R, Varner DD, Bissett W, et al. Sperm DNA quality evaluated by comet assay and sperm chromatin structure assay in stallions after unilateral orchiectomy. Theriogenology. 2015; 84: 833-7. CrossRef

Shamsi MB, Imam SN, Dada R. Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility. J Assist Reprod Genet. 2011; 28(11): 1073-85. CrossRef

Shi Y, Buffenstein R, Pulliam DA, et al. Comparative studies of oxidative stress and mitochondrial function in aging. Integr Comp Biol. 2010; 50(5): 869-79. CrossRef

Tosic J, Walton A. Formation of hydrogen peroxide by spermatozoa and its inhibitory effect of respiration. Nature. 1946; 158: 485. CrossRef

Uysal O, Bucak MN. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet Brno. 2007; 76(3): 383-90. CrossRef

Varesi S, Vernocchi V, Morselli MG, et al. DNA integrity of fresh and frozen canine epididymal spermatozoa. Reprod Biol. 2014; 14(4): 257-61. CrossRef

Yurchuk TO, Pavlovich OV, Gapon GO, et al. Lipid peroxidation and DNA fragmentation in fresh and cryopreserved spermatozoa of men at different spermatogenesis state. Ukr Biochem J. 2021; 93(3): 24-9. CrossRef

Yurchuk T, Petrushkо M, Gapon A, et al. The impact of cryopreservation on the morphology of spermatozoa in men with oligoasthenoteratozoospermia. Cryobiology. 2021; 100: 117-24. CrossRef

Downloads

Published

2023-01-16

How to Cite

Yurchuk, T., Pavlovich, O., & Petrushko, M. (2023). Sperm DNA Cryodamage in Domestic and Farm Animals: Detection Methods and Ways of DNA Integrity Improvement. Problems of Cryobiology and Cryomedicine, 32(3), 171–182. https://doi.org/10.15407/cryo32.03.171