Time-Dependent Features of Mass Transfer and Transmembrane Potential in Erythrocytes During Equilibration in Cryoprotective Solutions

Авторы

DOI:

https://doi.org/10.15407/cryo33.02.103

Ключевые слова:

physico-mathematical model, mass transfer, erythrocytes, cryoprotectants, transmembrane potential

Аннотация

Probl Cryobiol Cryomed 2023; 33(2):103–114

Биографии авторов

Oleksandr Todrin, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Low-Temperature Preservation

Olena Timofeyeva , Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Low-Temperature Preservation

Olga Gordiyenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Low-Temperature Preservation

Библиографические ссылки

Benga G. Water transport in red blood cell membranes. Progr Biophys Mol Biol. 1988. 51: 193-245. CrossRef

Best BP. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation research. 2015; 18(5): 422-42. CrossRef

Brahm J. The permeability of red blood cells to chloride, urea and water. J Exp Biol. 2013; 216(12): 2238-46. CrossRef

Chervy P, Petcut C, Rault D, at al. Organic nanoscrolls from electrostatic interactions between peptides and lipids: assembly steps and structure. Langmuir. 2019; 35: 10648−57. CrossRef

Ciana A, Achilli C, Balduini C, Minetti G. On the association of lipid rafts to the spectrin skeleton in human erythrocytes. Biochim Biophys Acta. 2011; 1808: 183-90. CrossRef

Gordiyenko OI, Gordiyenko YuE, Linnik TP, Gordiyenko EO. Experimental determination of human erythrocyte membrane permeability coefficients for a series of amides. CryoLetters. 2005; 26(1): 65-72. PubMed

Gordiyenko OI, Linnik TP, Gordiyenko EO. Erythrocyte membrane permeability for a series of diols. Bioelectrochemistry. 2004; 62:115-8. CrossRef

Funder J, Wieth JO. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol Scand. 1966; 68: 234-45. CrossRef

Fung YC, Winston CO, Tsang WSO, Pacitucci P. High resolution data on the geometry of red blood cells. Biorheology. 1981;18(2): 369-85. CrossRef

Kahana E, Streichman S, Silver BL. The role of electrostatic forces in the interaction between the membrane and cytoskeleton of human erythrocytes. Biochim Biophys Acta.1991; 1066(1): 1-5. CrossRef

Murray D, Ben-Tal N, Honig B, McLaughlin S. Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure. 1997; 5(8): 985-9. CrossRef

Samuel E Lux IV. Anatomy of the red cell membrane skeleton: unanswered questions. Blood. 2016; 127(2): 187-99. CrossRef

Sputtek A. Cryopreservation of red blood cells and platelets. Methods Mol Biol. 2007; 368: 283-301. CrossRef

Todrin AF, Timofeyeva OV, Smolyaninova YeI et al. Physicalmathematical model of substance redistribution between the cell and its hypertonic solution environment of penetrating cryoprotectants with relevance to membrane potential. CryoLetters. 2020; 41(4): 209-15. PubMed

Valberg LS, Holt JM, Paulson E, Szivek J. Spectrochemical analysis of sodium, potassium, calcium, magnesium, copper, and zinc in normal human erythrocytes. J Clinic Invest. 1965; 44(3): 379-9. CrossRef

Загрузки

Опубликован

2023-09-25

Как цитировать

Todrin, O., Timofeyeva , O., & Gordiyenko, O. (2023). Time-Dependent Features of Mass Transfer and Transmembrane Potential in Erythrocytes During Equilibration in Cryoprotective Solutions. Проблемы криобиологии и криомедицины, 33(2), 103–114. https://doi.org/10.15407/cryo33.02.103

Выпуск

Раздел

Теоретическая и экспериментальная криобиология