Cryopreservation of Multicellular Spheroids Derived from Primary Culture of Newborn Piglet Spinal Ganglion Cells
DOI:
https://doi.org/10.15407/cryo29.04.354Keywords:
dorsal root ganglia, multicellular spheroids, satellite glial cells, ï¬broblast-like cells, neuron-like cells, neonatal pigletsAbstract
Dorsal root ganglia (DRG) are a potential source of neural stem cells, since they contain the neural crest-derived cells capable to differentiate into neurons and different subpopulations of glial cells. It is known that under certain culture conditions, the DRG cells, derived from neonatal piglets form the floating multicellular spheroids (MSs), capable to produce the ï¬broblast-like cells (FLCs), glial cells (GCs) and neuron-like cells (NLCs). Here, we have cryopreserved the MSc, derived under serum-free culture conditions using 5, 7.5, 10% dimethyl sulfoxide (DMSO) and two-stage regimen of freezing. After cryopreservation, the MSs were established to preserve the capability to adhere as well as to produce three cell types: FLCs, GCs and NLCs. However, the capability of frozen-thawed MSs to produce different cell types was reduced. The cryoprotectant concentration affected the cell type, prevailing in the culture, derived from the frozen-thawed MSs. After cryopresevation with 10% DMSO, the monolayer consisted mainly of FLCs, while with 5 and 7.5% DMSO it mostly comprised GLCs.
Â
Probl Cryobiol Cryomed 2019; 29(4):Â 354-364
References
Ali SG, Sidorenko OS, Bozhok GA. [Influence of nutrient medium composition on the morphological characteristics of culture of dorsal root ganglion cells of neonatal piglets]. The Journal of V. N. Karazin Kharkiv National University. Series «Biology». 2018; 30: 49-59. Russian. CrossRef
Arkhipova SS, Raginov IS, Mukhitov AR, et al. Satellite cells of sensory neurons after various types of sciatic nerve trauma in the rat. Neurosci Behav Physiol. 2010; 40(6):609-14. CrossRef
Barras FM, Kuntzer T, Zurn AD, et al. Local delivery of glial cell line-derived neurotrophic factor improves facial nerve regeneration after late repair. Laryngoscope. 2009; 119(5): 846-55. CrossRef
Bondarenko TP, Legach ЕI, Kiroshka VV, et al. [Cultivation, cryopreservation and transplantation of the tissue of the endocrine glands]. In: Goltsev AN, editor. [Actual problems of cryobiology and cryomedicine.] Kharkiv: IPCC; 2012. p. 361-401. Russian.
Bozenovskiy VA, Baryshnikov AYu. [Human cell adhesion molecules]. Uspekhi sovremennoi biologii. 1994; 114(6): 741-53. Russian.
de Luca AC, Faroni A, Reid AJ. Dorsal root ganglia neurons and differentiated adipose-derived stem cells: An in vitro co-culture model to study peripheral nerve regeneration. J Vis Exp. [Internet]. 2015 [cited 2019 May 02]; (96):e52543. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354675/ CrossRef
Kang H, Tian L, Thompson W. Terminal Schwann cells guide the reinnervation of muscle after nerve injury. J Neurocytol. 2003; 32(5): 975-85. CrossRef
Koike T, Wakabayashi T, Mori T, et al. Sox2 promotes survival of satellite glial cells in vitro. Biochem Biophys Res Commun. 2015; 464(1): 269-74. CrossRef
Kuznetsov SL, Mushkambarov NN. [Histology, cytology and embryology: Textbook for medical schools]. Moscow:MIA, 2007. 600 p. Russian.
Li H, Dai Y, Shu J, et al. Spheroid cultures promote the stemness of corneal stromal cells. Tissue Cell. 2015; 47(1): 39-48. CrossRef
Liu H, Zhao L, Gu W, et al. Activation of satellite glial cells in trigeminal ganglion following dental injury and inflammation. J Mol Histol. 2018; 49(3): 257-63. CrossRef
Nagoshi N, Shibata S, Kubota Y, et al. Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell. 2008; 2(4):392-403. CrossRef
Nascimento RS, Santiago MF, Marques SA, et al. Diversity among satellite glial cells in dorsal root ganglia of the rat. Braz J Med Biol Res. 2008; 41(11): 1011-7. CrossRef
Plaksina EM, Sidorenko OS, Bozhok GA. Cryopreservation of multicellular spheroids derived from newborn piglet adrenal glands. Probl Cryobiol Cryomed. 2017; 27(4): 322-33. CrossRef
Plaksina EM Sidorenko OS, Legach ЕI, et al. [Expression of beta-III-tubulin in the neonatal adrenal cell culture: comparison of monolayer and 3D-culture]. The Journal of V. N. Karazin Kharkiv National University. Series «Biology». 2018; 28: 76-86. Russian. CrossRef
Rosich K, Hanna BF, Ibrahim RK, et al. The effects of glial cell line-derived neurotrophic factor after spinal cord injury. J Neurotrauma. 2017; 34(24): 3311-25. CrossRef
Wang XB, Ma W, Luo T, et al. A novel primary culture method for high-purity satellite glial cells derived from rat dorsal root ganglion. Neural Regen Res. 2019; 13(2): 339-45. CrossRef
Zhou XF, Deng YS, Chie E, et al. Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. Eur J Neurosci. 1999; 11(5): 1711-22. CrossRef
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).