Cryopreservation of Immature Oocytes at Germinal Vesicle Stage. When Gamete Maturation Performance Seems to Be Most Appropriate?
DOI:
https://doi.org/10.15407/cryo31.02.161Keywords:
oocyte, germinal vesicle, in vitro maturation, cryopreservation, vitrificationAbstract
Fertility preservation is among the priorities in reproductive medicine. However, the cancer patients and women with various functional ovarian disorders, wishing to preserve future reproductive potential may have some contraindications or no possibilities to cryopreserve mature oocytes and ovarian tissue. Therefore, the development of techniques for immature oocyte cryopreservation is considered an alternative strategy. Here, we have evaluated the survival, maturation, fertilization and embryo development rates of immature oocytes (Germinal vesicle (GV) stage – group 1) after cryopreservation and in vitro matured (IVM) ones (group 2) prior to cryopreservation, compared with in vivo matured metaphase-II (MII) oocytes (group 3). Survival rates were 97.6, 96.2 and 98.2 % for groups 1–3, respectively. The maturation rate of GV oocytes in group 1 was significantly lower than in group 2 and made 52.0 and 73.2%, respectively. The highest fertilization rate was revealed in group 3, and the lowest one was in group 1. The groups 1–3 showed the same tendency for further embryo development, i. e. the blastulation rates were 20.0, 38.5 and 56.9%, respectively. Thus, the survival rate of cryopreserved oocytes did not depend on their maturity rate. However, the IVM oocytes displayed lower fertilization and blastulation rates, than the in vivo matured ones. It was found that oocytes IVM should be performed prior to cryopreservation, because it ensured higher rates of maturation, fertilization and embryo development in vitro.
Probl Cryobiol Cryomed 2021; 31(2): 161–167
References
Ajduk A, Małagocki A, Maleszewski M. Cytoplasmic maturation of mammalian oocytes: development of a mechanism responsible for sperm-induced Ca2+ oscillations. Reprod Biol. 2008; 8:3-22. CrossRef
Brambillasca F, Guglielmo MC, Coticchio G et al. The current challenges to efficient immature oocyte cryopreservation. J Assist Reprod Genet. 2013; 30(12): 1531-9. CrossRef
Buderatska N, Gontar J, Ilyin I, et al. Does human oocyte cryopreservation affect equally on embryo chromosome aneuploidy? Cryobiology. 2020; 93: 33-6. CrossRef
Chian RC, Gilbert L, Huang JY, et al. Live birth after vitrification of in vitro matured human oocytes. Fertil Steril. 2009; 91: 372-6. CrossRef
Fasano G, Dechène J, Antonacci R, et al. Outcomes of immature oocytes collected from ovarian tissue for cryopreservation in adult and prepubertal patients. Reprod Biomed Online. 2017; 34(6): 575-82. CrossRef
Fasano G, Demeestere I, Englert Y. In-vitro maturation of human oocytes: before or after vitrification? J Assist Reprod Genet. 2012; 29: 507-12. CrossRef
Jones KT, Carroll J, Whittingham DG. Ionomycin, thapsigargin, ryanodine, and sperm induced Ca2+ release increase during meiotic maturation of mouse oocytes. J Biol Chem. 1995; 270(12): 6671-7. CrossRef
Kuwayama M, Vajta G, Kato O, et al. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online. 2005; 11(3): 300-8. CrossRef
Lee JA, Sekhon L, Grunfeld L, et al. In-vitro maturation of germinal vesicle and metaphase I eggs prior to cryopreservation optimizes reproductive potential in patients undergoing fertility preservation. Curr Opin Obstet Gynecol. 2014; 26(3): 168-73. CrossRef
McLaughlin M, Albertini DF, Wallace WHB, et al. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018; 24(3): 135-42. CrossRef
Mohsenzadeh M, Tabibnejad N, Vatanparast M, et al. Vitrification has detrimental effects on maturation, viability, and subcellular quality of oocytes post IVM in cancerous women: an experimental study. Int J Reprod Biomed (Yazd). 2019; 17(3): 175-84. CrossRef
Molina I, Gómez J, Balasch S, et al. Osmotic-shock produced by vitrification solutions improves immature human oocytes in vitro maturation. Reprod Biol Endocrinol [Internet]. 2016 May 11 [cited 2020 July 12]; 14(1): 27. Available from: https:// rbej.biomedcentral.com/articles/10.1186/s12958-016-0161- 1#citeas CrossRef
Morley P, Whitfield JF. The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types. J Cell Physiol. 1993; 156: 219-22. CrossRef
Muñoz E, González N, Muñoz L, et al. Ovarian stimulation in patients with breast cancer. Ecancermedicalscience [Internet]. 2015 Feb 3 [cited 2020 July 07]; 9: 504. Available from: https:// ecancer.org/es/journal/article/504-ovarian-stimulation-in-patients-with-breast-cancer CrossRef
Paynter S. A rational approach to oocyte cryopreservation. Reprod Biomed Online. 2005; 10: 578-86. CrossRef
Petrushko MP, Yurchuk TO, Buderatska NO, et al. Oolemma invagination of fresh and cryopreserved human oocytes during in vitro fertilization by ICSI. Probl Cryobiol Cryomed. 2018; 28(3): 258-65. CrossRef
Petrushko M, Yurchuk T, Piniaiev V, Buderatska N. Cryopreservation of incomplete compacted morulae and preliminary biopsy of excluded fragments. Zygote. 2019; 27(6): 386-91. CrossRef
Rivas Leonel EC, Lucci CM, Amorim CA. Cryopreservation of human ovarian tissue: a review. Transfus Med Hemother. 2019; 46(3): 173-81. CrossRef
Takae S, Suzuki N. Current state and future possibilities of ovarian tissue transplantation. Reprod Med Biol. 2019; 18(3): 217-24. CrossRef
Takahashi T, Igarashi H, Doshida M, et al. Lowering intracellular and extracellular calcium contents prevents cytotoxic effects of ethyleneglycol based vitrifications olutioninun fertilized mouse oocytes. Mol Reprod Dev. 2004; 68: 250-8. CrossRef
Wang F, Yuan RY, Li L, et al. Mitochondrial regulation of [Ca2+]i oscillations during cell cycle resumption of the second meiosis of oocyte. Cell Cycle. 2018; 17(12): 1471-86. CrossRef
Yazdanpanah F, Khalili MA, Eftekhar M, et al. The effect of vitrification on maturation and viability capacities of immature human oocytes. Arch Gynecol Obstet 2013; 288: 439-44. CrossRef
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).