Effect of Incubation of PK-15 Line Cells with Cryoprotectants on Amount of Gal-alpha-1,3-Gal Epitopes

Authors

  • Konstantin I. Bohuslavskyi Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Natalia M. Alabedalkarim Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Alexsandr V. Pakhomov Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Galyna A. Bozhok Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

DOI:

https://doi.org/10.15407/cryo26.04.331

Keywords:

Gal-α-1, 3-Gal epitope, cryoprotectants, dimethyl sulfoxide, polyethylene glycol

Abstract

Transplantation of bioprostheses derived from bovine and porcine tissues is an advanced method of correcting defects in blood vessels and valves, however when using it a hyperacute immune response associated with the presence of Gal-alpha- 1,3-Gal (α-Gal epitope) on the surface of cell membranes can develop. We have studied the effect of penetrating and nonpenetrating cryoprotectants on the amount of α-Gal epitopes on membranes of PK-15 cell line of porcine origin. Cell labeling with BSIB4 lectin conjugated with FITC and flow cytometry revealed a significant increase in the number of fluorescent cells after incubation with various concentrations of dimethyl sulfoxide and polyethylene glycol with MW of 1500 (PEG-1500). The revealed effect may be associated with an additional exposure of α-Gal epitopes on cell membrane, locally deformed due to the action of cryoprotectants.

Probl Cryobiol Cryomed 2016; 26(4): 331–339

Author Biographies

Konstantin I. Bohuslavskyi, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryoendocrinology

Natalia M. Alabedalkarim, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryoendocrinology

Alexsandr V. Pakhomov, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryoendocrinology

Galyna A. Bozhok, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryoendocrinology

References

Aravind S., Paul W., Vasudev S.C. et al. Polyethylene glycol (PEG) modified bovine pericardium as a biomaterial: a comparative study on immunogenicity. J Biomater Appl 1998; 13(2): 158–165. CrossRef

Badylak S. F., Gilbert T. W. Immune response to biologic scaffold materials. Semin. Immunol 2008; 20(2): 109–116. CrossRef

Belous A.M, Grischenko V.I. Cryobiology. Kyiv: Naukova Dumka; 1994.

Blackall D.P., Armstrong J.K., Meiselman H.J. et al. Polyethylene glycol-coated red blood cells fail to bind glycophorin A-specific antibodies and are impervious to invasion by the Plasmodium falciparum malaria parasite. Blood 2001; 97(2): 551–556. CrossRef PubMed

Deglon N., Aubert V., Spertini F.P. et al. Presence of Gal-alpha 1,3- Gal epitope on xenogeneic lines: implications for cellular genetherapy based on the encapsulation technology. xenotransplantation. 2003; 10(3): 204–213. CrossRef PubMed

Diaz T.M., Pertega S., Ortega D. et al. FDA/PI flow cytometry assay of complement-mediated cytotoxicity of antibodies generated during xenotransplantation. Cytometry A 2004; 62(1): 54–60. CrossRef PubMed

Ezzelarab M., Ayares D., Cooper D.K.C. Carbohydrates in xenotransplantation. Immunol Cell Biol 2005; 83(4): 396–404.

CrossRef PubMed

Galili U. The α-Gal epitope (Gal1-3Galα1-4GlcNAc-R) in xenotransplantation. Biochemie 2001; 83(7): 557. CrossRef

Galili U. The α-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol 2005; 83(6): 674–686. CrossRef PubMed

Galili U., Clark M.R., Shohet S.B. et al. Evolutionary relationship between the natural anti-Gal antibody and the Gal-α-l,3-Gal epitope in primates. Proc Natl Acad Sci USA Immunology 1987; 84(5): 1369–1373. CrossRef

Galili U., Shohet S.B., Kobrin E. et al. Man, apes, and Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem 1988; 263(33): 17755–17762.

Galili U., Swanson K. Evolution gene sequences suggest inactivation of α-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci USA 1991; 88(16): 7401–7404. CrossRef

Goldstein I.J., Blake D.A., Ebisu S. et al. Carbohydrate binding studies on the Bandeiraea simplicifolia 1 isolectins. Lectins which are mono-, di-, tri-, and tetravalent for N-acetyl-D-galactosamine. J Biol Chem 1981; 256(8): 3890–3893. PubMed

Goldstein S., Clarke D.R., Walsh S.P. et al. Transpecies heart valve transplant: advanced studies of a bioengineered xenoautograft. Ann Thorac Surg 2000; 70(6): 1962–1969. CrossRef

Gonzalez-Andrades M., de la Cruz C.J., Ionescu A.M. et al. Generation of bioengineered corneas with decellularized xenografts and human keratocytes. Invest Ophthalmol Vis Sci 2011; 52(1): 215. CrossRef PubMed

Gurtovenko A.A., Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B 2007; 111(35): 10453–104560. CrossRef PubMed

Han D.K., Jeong S.Y., Kim Y.H. Evaluation of blood compatibility of PEO grafted heparin immobilized polyurethanes. J Biomed Mater Res Appl Biomater 1989; 23(A2 Suppl): 211–228. PubMed

Hui S. W., Isac T., Boni L. T. et al. Action of polyethyleneglycol on the fusion of human erythrocyte membranes. J Membr Biol 1985; 84(2): 137–146. CrossRef PubMed

Jarocha D., Zuba-Surma E., Majka M. Dimethyl sulfoxide (DMSO) increases percentage of CXCR4(+) hematopoietic stem/progenitor cells, their responsiveness to an SDF-1 gradient, homing capacities, and survival cell. Cell Transplant 2016; 25(7): 1247–1257. CrossRef PubMed

Katopodis A.G., Warner R.G., Duthaler R.O. et al. Removal of anti-Galalpha1,3 Gal xenoantibodies with an injectable polymer. J Clin Invest 2002; 110(12): 1869–1877. CrossRef PubMed

Kirkeby S., Moe D. Binding of Griffonia simplicifolia 1 isolectin B4 (GS1 B4) to α-galactose antigens. Immunol Cell Biol 2001; 79: 121–127. CrossRef PubMed

Konakci K.Z., Bohle B., Blumer R. et al. Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. Eur J Clin Invest 2005; 35(1): 17–23. CrossRef PubMed

Kuleshova L.G. Transformation of human erythrocytes in nonelectrolytes of H-alcohols series. Part I. Morphological aspects of interaction. Problems of Cryobiology 1999; (1): 9–13.

Lehtonen J.Y., Kinnunen P.K. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes. Biophys J 1995; 68(2): 525–535. CrossRef

Lim H. G., Kim G. B., Jeong S. et al. Development of a nextgeneration tissue valve using a glutaraldehyde-fixed porcine aortic valve treated with decellularization, α-galactosidase, space filler, organic solvent and detoxification. EJCTS 2015; 48(1): 104–113.

Mangold A., Szerafin N., Hoetzenecker K. et al. Alpha-Gal specific IgG immune response after implantation of bioprostheses. Thorac Cardiov Surg 2009; 57(4): 191–195. CrossRef PubMed

McIntyre J.A., Gilula N.B., Karnovsky M.J. Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes. J Cell Biol 1974; 60(1): 192–203. CrossRef PubMed

Pushkar N.S., Belous A.M., Tsvetkov Ts.D. Theory and practice of cryogenic preservation and sublimation. Kyiv: Naukova Dumka; 1984. 29.

Roy H.K., DiBaise J.K., Black J. et al. Polyethylene glycol induces apoptosis in HT-29 cells: potential mechanism for chemoprevention of colon cancer. FEBS Lett 2001; 496(2–3): 143–146. CrossRef

Saeromi J., Yoon E.J., Lim H.G. et al. The effect of space fillers in the cross-linking processes of bioprosthesis. Biores Open Access 2013; 2(2): 98–106. CrossRef PubMed

Sandomirsky B.P., Repin N.V., Mikhailova I.P. et al. Application of cryoirradiation-modified xenopericardium for building bladder wall defect. Int J Artif Organs 2016; 39(3): 121–127. CrossRef PubMed

Schenke-Layland K., Madershahian N., Riemann I. et al. Impact of cryopreservation on extracellular matrix structures of heart valve leaflets. Ann Thorac Surg 2006; 81(3): 918–926. CrossRef PubMed

Siddiqui R.F., Abraham J.R., Butany J. Bioprosthetic heart valves: modes of failure. Histopathology 2009; 55(2): 135–144. CrossRef PubMed

Simon P., Kasimir M.T., Seebacher G. et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 2003; 23(6): 1002–1006. CrossRef

Wang D., Kyluik D.L., Murad K.L et al. Polymer-mediated immunocamouflage of red blood cells: effects of polymer size on antigenic and immunogenic recognition of allogeneic donor blood cells. Sci China Life Sci 2011; 54(7): 589–598. CrossRef PubMed

Wollmann L.C., Laurindo C.A., Costa F.D. et al. Effects of cryopreservation and/or decellularization on extracellular matrix of porcine valves. Rev Bras Cir Cardiovasc 2011; 26(3): 490–496. CrossRef PubMed

Zemlianskykh N. G., Babiychuk L.A. Cryopreservation in presence of PEG-1500 affects erythrocyte surface characteristics. Probl Cryobiol Cryomed 2015; 25(2): 104–113. CrossRef

Zemlianskykh N. G. Effect of substances with cryoprotective properties on surface marker CD44 in human erythrocytes. Cytology and Genetics 2016; 50(3): 203–213. CrossRef

Published

2016-12-23

How to Cite

Bohuslavskyi, K. I., Alabedalkarim, N. M., Pakhomov, A. V., & Bozhok, G. A. (2016). Effect of Incubation of PK-15 Line Cells with Cryoprotectants on Amount of Gal-alpha-1,3-Gal Epitopes. Problems of Cryobiology and Cryomedicine, 26(4), 331-339. https://doi.org/10.15407/cryo26.04.331

Issue

Section

Theoretical and Experimental Cryobiology