Choice of Vitrification Mode for Macroporous Matrices Seeded with Mesenchymal Stromal Cells
DOI:
https://doi.org/10.15407/cryo30.01.077Keywords:
tissue engineered constructs, macroporous matriÑes, vitriï¬cation, devitriï¬cation, cracking, mesenchymal stromal cells, viabilityAbstract
The composition of the solution of cryoprotectants and vitrification conditions (saturation methods, removal of cryoprotectants, cooling-warming modes) of tissue engineered constructs based on macroporous matrices (MPM) and mesenchymal stromal cells (MSCs), preventing the development of crystallization and cracking of a glassy phase, were determined and the influence of the developed conditions on cell viability and MPM structure was studied. Crystallization and cracking were investigated during MPM cooling and warming in cryoprotectant solutions in cryovials. The viability of MSCs in suspension was determined by trypan blue staining, and that as a part of MPM was examined by ethidium bromide and fluorescein diacetate staining. The MSCs metabolic activity was evaluated with the MTT test. The selected conditions were shown to provide a high viability of MSCs after vitrification in the form of a suspension, but required an improvement to preserve the cells seeded in macroporous matrices.
Probl Cryobiol Cryomed 2020; 30(1): 77-89
References
Acker J, Larese A, Yang H, et al. Intracellular ice formation is affected by cell interactions. Cryobiology. 1999; 38(4): 363-71. CrossRef
Baudot A, Alger L, Boutron P. Glass-forming tendency in the system water-dimethyl sulfoxide. Cryobiology. 2000; 40(2): 151-8. CrossRef
Baudot A, Odagescu V. Thermal properties of ethylene glycol aqueous solutions. Cryobiology. 2004; 48(3): 283-94. CrossRef
Catry J, Luong-Nguyen M, Arakelian L, et al. Circumferential esophageal replacement by a tissue-engineered substitute using mesenchymal stem cells: an experimental study in mini pigs. Cell Transplant. 2017; 26(12): 1831-9. CrossRef
Chen D, Gelenter MD, Hong M, et al. Icephobic surfaces induced by interfacial nonfrozen water. ACS Appl Mater Interfaces. 2017; 9(4): 4202-14. CrossRef
Dankberg F, Persidsky MD. A test of granulocyte membrane integrity and phagocytic function. Cryobiology. 1976; 13(4): 430-2. CrossRef
Day AGE, Bhangra KS, Murray-Dunning C. The effect of hypothermic and cryogenic preservation on engineered neural tissue. Tissue Eng Part C Methods. 2017; 23(10): 575-82. CrossRef
Flaxman BA. Cell identification in primary cell cultures from skin. In vitro. 1974; 10(1-2): 112-8. CrossRef
Fritsch K, Pigeot S, Feng X, et al. Engineered humanized bone organs maintain human hematopoiesis in vivo. Exp Hematol. 2018; 61: 45-51. CrossRef
Irimia D, Karlsson J. Kinetics and mechanism of intercellular ice propagation in a micropatterned tissue construct. Biophys J. 2002; 82(4): 1858-68. CrossRef
Kravchenko LP, Petrenko AYu, Somov AYu, et al. Respiratory activity of isolated rat hepatocytes following cold storage and subsequent rewarming: A comparison of sucrose-based and University of Wisconsin solutions. Cryobiology. 2001; 42(3): 218-21. CrossRef
Kuleshova LL, MacFarlane DR, Trounson AO, et al. Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiology. 1999; 38(2): 119-30. CrossRef
Lawson A, Mukherjee IN, Sambanis A. Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues. Cryobiology. 2012; 64(1): 1-11. CrossRef
MacFarlane DR, Forsyth M, Barton CA. Vitriï¬cation and devitriï¬cation in cryopreservation. In: Steponkus PL, editor. Advances in Low-Temperature Biology. London: JAI Press; 1991, Vol. 1. p. 221-77.
Mehl PM. Nucleation and crystal growth in a vitriï¬ cation solution tested for organ cryopreservation by vitriï¬ cation. Cryobiology. 1993; 30(5): 509-18. CrossRef
Petrenko YA, Ivanov RV, Lozinsky VI, et al. Comparison of the methods for seeding human bone marrow mesenchymal stem cells to macroporous alginate cryogel carriers. Bull. Exp. Biol. Med. 2011; 150(4): 543-6. CrossRef
Petrenko YA, Ivanov RV, Petrenko AY, et al. Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. J Mater Sci Mater Med. 2011; 22(6): 1529-40. CrossRef
Riss T, Moravec RA, Niles AL, et al. Cell Viability Assays. In: Assay Guidance Manual [Internet]. 2013 May 1 [cited 2018 May 22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK144065/
Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976; 13: 29-83. CrossRef
Shaw JM, Kuleshova LL, MacFarlane DR, et al. Vitrification properties of solutions of ethylene glycol in saline containing PVP, Ficoll, or dextran. Cryobiology. 1997; 35(3): 219-29. CrossRef
Steif PS, Palastro M, Wen CR, et al. Cryomacroscopy of vitrification, Part II: Experimental observations and analysis of fracture formation in vitrified VS55 and DP6. Cell Preservation Technology. 2005; 3(3): 184-200. CrossRef
Trufanova NA, Zaikov VS, Zinchenko AV, et al. Closed vitrification system as a platform for cryopreservation of tissue engineered constructs. CryoLetters. 2016; 37(6): 440-7. PubMed
Wen F, Magalhães R, Gouk SS, et al. Vitreous cryopreservation of nanofibrous tissue-engineered constructs generated using mesenchymal stromal cells. Tissue Eng Part C Methods. 2009; 15(1): 105-14. CrossRef a>
Wowk B, Leitl E, Rash CM, et al. Vitrification enhancement by synthetic ice blocking agents. Cryobiology. 2000; 40(3): 228-36. CrossRef
Wowk B. Roles of ice-active agents in organ cryopreservation. Cryobiology. 2015; 71(1): 172-3. CrossRef
Wu Y, Yu H, Chang S, et al. Vitreous cryopreservation of cell-biomaterial constructs involving encapsulated hepatocytes. Tissue Eng. 2007; 13(3): 649-58. CrossRef
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Natalia Trufanova , Igor Kovalenko , Oleksandr Petrenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).