Проблемы и перÑпективы иÑÐ¿Ð¾Ð»ÑŒÐ·Ð¾Ð²Ð°Ð½Ð¸Ñ Ñтволовых клеток Ñ…Ñ€Ñщевой ткани
DOI:
https://doi.org/10.15407/cryo29.04.303Ключевые слова:
Ñ…Ñ€Ñщевые ткани, Ñтволовые клетки, ÑкÑпериментальные модели, лабораторные животные, криоконÑервирование Ñтволовых клетокАннотация
Ð’ работе обÑуждаютÑÑ Ð¾Ð±Ñ‰Ð¸Ðµ вопроÑÑ‹ Ð´Ð»Ñ ÑпециалиÑтов в облаÑти биологии, криомедицины и биомеханики отноÑительно Ð¿Ñ€Ð¸Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ Ñтволовых клеток (СК) Ð´Ð»Ñ Ð»ÐµÑ‡ÐµÐ½Ð¸Ñ Ð·Ð°Ð±Ð¾Ð»ÐµÐ²Ð°Ð½Ð¸Ð¹ Ñ…Ñ€Ñщевой ткани. Ð’ наÑтоÑщее Ð²Ñ€ÐµÐ¼Ñ Ð²Ñ‹Ñвлены ниши СК в гиалиновых Ñ…Ñ€Ñщах, Ñиновиальных мембранах и Ñиновиальной жидкоÑти диартрозов, межпозвоночных диÑках, и мениÑках коленных ÑуÑтавов, волокниÑÑ‚Ñ‹Ñ… Ñ…Ñ€Ñщах виÑочно-нижнечелюÑтного ÑуÑтава и ÑлаÑтичеÑких Ñ…Ñ€Ñщах ушной раковины. Определены ÑпецифичеÑкие оÑобенноÑти и механизм дейÑÑ‚Ð²Ð¸Ñ Ð¡Ðš Ñ…Ñ€Ñщевой ткани. Разработаны ÑкÑпериментальные модели патологии Ñ…Ñ€Ñщевой ткани на разных видах животных. ÐкÑпериментальные иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¿Ñ€Ð¾Ð´ÐµÐ¼Ð¾Ð½Ñтрировали возможноÑÑ‚ÑŒ иÑÐ¿Ð¾Ð»ÑŒÐ·Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¡Ðš Ð´Ð»Ñ Ð»ÐµÑ‡ÐµÐ½Ð¸Ñ Ð·Ð°Ð±Ð¾Ð»ÐµÐ²Ð°Ð½Ð¸Ð¹, вызванных патологией Ñ…Ñ€Ñщевой ткани. Показано, что применение криоконÑервированных СК Ñ…Ñ€Ñщевой ткани во врачебной практике ÑвлÑетÑÑ Ñффективным и перÑпективным. Ðа ÑегоднÑшний момент Ñтот Ð²Ð¾Ð¿Ñ€Ð¾Ñ Ð½ÐµÐ´Ð¾Ñтаточно иÑÑледован, поÑтому необходимо разработать оптимальные режимы замораживаниÑ, подобрать криозащитные Ñреды, а также оценить безопаÑноÑÑ‚ÑŒ такой терапии.
Â
Probl Cryobiol Cryomed 2019; 29(4): XXX–XXX
Библиографические ссылки
Aryaei A, Vapniarsky N, Ma DV, et al. Recent tissue engineering advances for the treatment of temporomandibular joint disorders. Curr Osteoporosis Rep. 2016; 14: 269-79. CrossRef
Bailey J, Fields A Liebenberg E, et al. Comparison of vertebral and intervertebral disc lesions in aging humans and rhesus monkeys. Osteoarthritis Cartilage 2014; 22: 980-5. CrossRef
Bright P, Hambly K. A systematic review of reporting of rehabilitation in articular-cartilage-repair studies of third-generation autologous chondrocyte implantation in the knee. J Sport Rehabil. 2014; 23: 182-91. CrossRef
Chan W, Tiffany Y, Au K, et al. Coming together is a beginning: the making of an intervertebral disc birth defects. Research (Part C). 2014; 102: 83-100. CrossRef
Chen S, Deng X, Ma K, et al. icariin improves the viability and function of cryopreserved human nucleus pulposus-derived mesenchymal stem cells. Oxid Med Cell Longev. 2018; 18: 1-12. CrossRef
Chisnoiu AM, Picos AM, Popa S, et al. Factors involved in the etiology of temporomandibular disorders - a literature review. Clujul Med. 2015; 88: 473-8. CrossRef
Cui G, Wang Y, Li C, et al. Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: a meta analysis. Exp Ther Med. 2016; 12: 3390-400. CrossRef
Daly C, Ghosh P, Jenkin G, et al. A review of animal models of intervertebral disk degeneration: pathophysiology, regeneration, and translation to the clinic. Spine. 2011; 36: 1519-27. CrossRef
De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001; 44(8): 1928-42. CrossRef
Detamore M, Athanasiou K. Motivation, characterization, and strategy for tissue engineering the temporomandibular joint disc. Tissue Eng. 2003; 9: 1065-87. CrossRef
Ding Z, Huang H. Mesenchymal stem cells in rabbit meniscus and bone marrow exhibit a similar feature but a heterogeneous multi-differentiation potential: superiority of meniscus as a cell source for meniscus repair. BMC Musculoskeletal Disorders. 2015; 16: 65-6. CrossRef
Fellows CR, Matta C, Zakany R, et al. Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair. Front Genet [Internet]. 2016 [cited 24.04.2019]; 7: 23. Avaluable from: https://www.frontiersin.org/articles/10.3389/fgene.2016.00213/full CrossRef
Feng Y Egan B Wang J. Genetic factors in intervertebral disk degeneration. Genes Dis. 2016;3:178-85. CrossRef
Giri TK, Alexander A, Agrawal M, Ajazuddin S. Current status of stem cell therapies in tissue repair and regeneration. Curr Stem Cell Res Ther. 2018; 13(7): 1-10.
Gómez-Aristizábal A, Sharma A, Bakooshli MA, et al. Stage-specific differences in secretory profile of mesenchymal stromal cells (MSCs) subjected to early- vs late-stage OA synovial fluid. Osteoarthritis Cartilage. 2017; 25: 737-41. CrossRef
Gurruchaga H, Saenz del Burgo L, Garate A, et al. Cryopreservation of human mesenchymal stem cells in an allogeneic bioscaffold based on platelet rich plasma and synovial fluid. Sci Rep. [Internet]. 2017 Nov 16 [cited 24.04.2019]; 7:15733. Available from: https://www.nature.com/articles/s41598-017-16134-6 CrossRef
Hatsushika D, Muneta T, Nakamu T, et al. Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniskus regeneration in a porcine massive meniscus defect model. Osteoarthritis Cartilage. 2014;22: 941-50. CrossRef
Hilkens P, Driesen RB, Wolfs E, et al. Cryopreservation and banking of dental stem cells. Adv Exp Med Biol. 2016; 951: 199-235. CrossRef
Hoffman RM, Kajiura S, Cao W, et al. Cryopreservation of hair-follicle associated pluripotent (hap) stem cells maintains differentiation and hair-growth potential. Adv Exp Med Biol. 2016; 951: 191-8. CrossRef
Hunter CJ, Matyas JR, Duncan NA. Cytomorphology of notochondral and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat. 2004; 205: 357-62. CrossRef
Hwang S, Kim SY, Park SH, et al. Human inferior turbinate: an alternative tissue source of multipotent mesenchymal stromal cells. Otolaryngol Head Neck Surg. 2012; 147: 568-74. CrossRef
Imai Y, Okuma M, An HS, et al. Restoration of disc height loss by recombinant human osteogenic protein-1 injection into intervertebral discs undergoing degeneration induced by an intradiscal injection of chondroitinase ABC. Spine. 2007; 32: 1197-205. CrossRef
Jiang Y, Tuan R. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol. 2015; 11: 206-12. CrossRef
Jiang Y, Cai Y, Zhang W, et al. Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Trans Med. 2016; 5: 733-44. CrossRef
Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 2014; 28: 5-15. CrossRef
Johnstone B, Alini M, Cucchiarini M, et al. tissue engineering for articular cartilage repair - the state of the art. European Cells and Materials. 2013; 25: 248-67. CrossRef
Kahn D, Les C, Xia Y. Effects of cryopreservation on the depth-dependent elastic modulus in articular cartilage and implications for osteochondral grafting. J Biomech Eng. 2015; 137(5): 54-9. CrossRef
Kasai N, Mera H, Wakitani S, et al. Effect of epigallocatechin-3-o-gallate and quercetin on the cryopreservation of cartilage tissue. Biosci Biotechnol Biochem. 2017; 81(1): 192-9. CrossRef
Katz JN. Lumbar disk disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am. 2006; 88(2): 21-4. CrossRef
Kim J, Song D, Kim S, et al. Development and characterization of various osteoarthritis models for tissue engineering. PLoS ONE [Internet]. 2018 Mar 13 [cited 24.07.2018]; 13(3):e0194288. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194288 CrossRef
Kimura T, Nakata K, Tsumaki N, et al. Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int Orthopaedics. 1996; 20(3): 177-81. CrossRef
Kobayashi S, Takebe T, Inuia M, et al. Reconstruction of human elastic cartilage by a CD44+ CD90+ stem cell in the ear perichondrium. Proc Natl Acad Sci U S A. 2011; 108: 14479-84. CrossRef
Kobayashi S, Takebe T, Zheng Y, et al. Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium. PLoS ONE [Internet]. 2011 Oct 19 [cited 03.06.2018]; 6(10):e26393. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026393 CrossRef
Lampropoulou-Adamidou K, Lelovas P, Karadimas EV, et al. Useful animal models for the research of osteoarthritis. Eur J Orthop Surg Traumatol. 2014; 24: 263-71. CrossRef
Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Translant. 2017; 9: 76-88. CrossRef
Levillain A, Boulocher C, Kaderli S, et al. Meniscal biomechanical alterations in ACLT rabbit model of early osteoarthritis. Osteoarthritis Cartilage. 2015; 23: 1186-93. CrossRef
Little C, Smith M. Animal models of osteoarthritis. Cur Rheumatol Rev. 2008, 4: 1-8. CrossRef
Luo S, Shi Q, Zha Z, et al. Morphology and mechanics of chondroid cells from human adipose-derived stem cells detected by atomic force microscopy. Mol Cell Biochem. 2012; 365: 223-31. CrossRef
Maerz T, Herkowitz H, Baker K. Molecular and genetic advances in the regeneration of the intervertebral disc. Surg Neurol Int. 2013; 4(2): S94-S105. CrossRef
Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, et al. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015; 71(2): 181-97. CrossRef
Masahiro T, Sakai D, Hiyama A, et al. Effect of Cryopreservation on canine and human activated nucleus pulposus cells: a feasibility study for cell therapy of the intervertebral disc. Biores Open Access. 2013; 2(4): 273-82. CrossRef
Mastbergen SC, Marijnissen AC, Vianen ME, et al. The canine 'groove' model of osteoarthritis is more than simply the expression of surgically applied damage. Osteoarthritis Cartilage. 2006;14: 39-46. CrossRef
Mathijs GA, de Vries M, Bennink MB. Functional tissue analysis reveals successful cryopreservation of human osteoarthritic synovium. PLoS One [Internet]. 2016 Nov 21 [cited 24.04.2019]; 11(1):e0167076. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167076 CrossRef
Mazor M, Cesaro A, Ali M, Best TM, et al. Progenitor cells from cartilage: grade specific differences in stem cell marker expression. Int J Mol Sci. 2017;18:1759-60. CrossRef
McCoy AM. Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol. 2015;52:803-18. CrossRef
McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat Rev Rheumatol. 2017;12:719-30. CrossRef
Morrison KA, Cohen BP, Asanbe O, et al. Optimizing cell sourcing for clinical translation of tissue engineered ears. Biofabrication. 2016;9:015-19. CrossRef
Nam BM, Kim BY, Jo YH, et al. Effect of cryopreservation and cell passage number on cell preparations destined for autologous chondrocyte transplantation. Transplant Proc. 2014; 46(4): 1145-9. CrossRef
Nam Y, Rim Y, Lee J, Ju J. Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int [Internet]. 2018 [cited 03.06.2018]; 2018: 8490489. Available from: https://www.hindawi.com/journals/sci/2018/8490489/ CrossRef
Oldershaw RA. Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int J Exp Pathol. 2012;93:389-400. CrossRef
Otto IA, Levato R, Webb WR, et al. Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture. Eur Cell Mater. 2018; 35: 132-50. CrossRef
Pattappa G, Zhen Li, Peroglio M, et al. Diversity of intervertebral disc cells: phenotype and function. J Anat. 2012; 221: 480-96. CrossRef
Perdikakis E, Karachalios T, Katonis P, Karantanas A Comparison of MR-arthrography and MDCT-arthrography for detection of labral and articular cartilage hip pathology. Skeletal Radiol. 2011; 40: 1441-7. CrossRef
Rizk A, Rabie AB. Human dental pulp stem cells expressing transforming growth factor β3 transgene for cartilage-like tissue engineering. Cytotherapy. 2013; 5: 712-25. CrossRef
Rodrigues-Pinto R, Richardson SM, Hoyland JA. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disk degeneration. Eur Spine J. 2014; 23: 1803-14. CrossRef
Rusu E, Necula L, Neagu A, Al,ecu M, Stan C, Albulescu R, Tanase C. Current status of stem cell therapy: Opportunities and limitations. Turk J Biol 2016; 40: 955-67. CrossRef
Sahlman J, Inkinen R, Hirvonen T, Lammi MJ Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the gene for Type II collagen. Spine. 2001; 26(23): 2558-65. CrossRef
Sekiya I, Ojima M, Suzuki S et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res. 2012; 30(6): 943-9. CrossRef
Shen W, Chen J, Zhu T, et al. Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/cxcr4-mediated homing. Stem Cells Trans Med. 2014; 3: 387-94. CrossRef
Singh K, Masuda K, An HS. Animal models for human disc degeneration. Spine J. 2005;6:267S-279S. CrossRef
Sriuttha W, Uttamo N, Kongkaew A. Ex vivo and in vivo characterization of cold preserved cartilage for cell transplantation. Cell Tissue Bank. 2016; 17(4): 721-34. CrossRef
Stoddart MJ, Bara J, Alini M. Cells and secretome - towards endogenous cell re-activation for cartilage repair. Adv Drug Deliv Rev. 2015; 84: 135-45. CrossRef
Sun Y, Zhang G, Liu Q, et al. Chondroitin sulfate from sturgeon bone ameliorates pain of osteoarthritis induced by monosodium iodoacetate in rats. Int J Biol Macromol. 2018; 117: 95-101. CrossRef
Tang R, Jing L, Willard V, et al. Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Research & Therapy. 2018; 9: 61-3. CrossRef
Tani Y, Sato M, Maehara M, et al. The effects of using vitrified chondrocyte sheets on pain alleviation and articular cartilage repair. J Tissue Eng Regen Med. 2017; 11(12): 3437-44. CrossRef
Vangsness CT Jr, Higgs G, Hoffman JK. Implantation of a novel cryopreserved viable osteochondral allograft for articular cartilage repair in the knee. J Knee Surg. 2018; 31(6): 528-35. CrossRef
Volkova N, Yukhta M, Goltsev A. Cryopreserved mesenchymal stem cells stimulate regeneration in an intervertebral disc. Biomed. 2015;3: 237-47. CrossRef
Wei X, Yang X, Han Z, Shao Q, et al. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica. 2013;34:747-54. CrossRef
Wu L, Prins HJ, Helder MN, et al. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A. 2012; 18: 1542-51. CrossRef
Yan J, Tian F, Wang W, et al. Age dependent changes in cartilage matrix, subchondral bone mass, and estradiol levels in blood serum, in naturally occurring osteoarthritis in guinea pigs. Int J Mol Sci. 2014; 15: 13578-95. CrossRef
Yang N, Nayeb-Hashemi H, Canavan PK. The combined effect of frontal plane tibiofemoral knee angle and meniscectomy on the cartilage contact stresses and strains. Ann Biomed Eng. 2009; 37: 2360-72. CrossRef
Yong KW, Choi JR, Wan Safwani WK. Biobanking of human mesenchymal stem cells: future strategy to facilitate clinical applications. Adv Exp Med Biol. 2016; 951: 99-110. CrossRef
Yong KW, Wan Safwani WK, xu f. cryopreservation of human mesenchymal stem cells for clinical applications: current methods and challenges. Biopreserv Biobank. 2015; 13(4): 231-9. CrossRef
Zellner J, Pattappa G, Koch M, et al. Autologous mesenchymal stem cells or meniscal cells: what is the best cell source for regenerative meniscus treatment in an early osteoarthritis situation? Stem Cell Res Ther. 2017; 8: 225-31. CrossRef
Zhang Y, Drapeau S, An H, et al. Histological features of the degenerating intervertebral disc in a goat disc-injury model. Spine. 2001; 26: 2558-65. CrossRef
Zhao Z, Zhou X, Guan J, et al. Stem cells and chondrocytes increase the viability of chondrocytes in rat chondral defects. Oncol Let. 2018; 15: 7021-7. CrossRef
Zimmerlin L, Park T, Zambidis E, et al. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie. 2013; 95: 2235-45. CrossRef
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Авторы, публикующие в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).