Viability of Bifidobacterium bifidum 1 under hypothermia, single and repeated freeze-thaw cycles.
DOI:
https://doi.org/10.15407/cryo30.03.247Ключевые слова:
viability, freeze-thaw, thermal cycling, daily biomass growth, bifidobacteria, biofilm formationАннотация
Abstract: The viability of bacteria of the Bifidobacterium bifidum 1 probiotic strain under hypothermia, single and repeated freeze-thaw cycles (thermal cycling) was studied. Samples of bifidobacterial suspensions were frozen immediately after isolation or after daily hypothermic storage in three ways to the final temperature of either (–23 ± 1) or (–196 ± 1)ºC. After slow freezing of the samples down to (–23 ± 1) ºC bigger quantitative losses of bifidobacteria were observed if compared with those after rapid freezing by a direct immersion into liquid nitrogen. Storage of the samples under hypothermia and a single freeze-thaw was accompanied with a strong inhibition of the daily growth of bifidobacteria biomass and an increased formation of biofilms. Ten-fold thermal cycling in the most unfavorable way for survival did not lead to the death of all cells in suspensions. Up to 35% of bifidobacteria remained viable. Indices of the bifidobacteria ability to enhance biomass remained at the level of 35%, and the ability to form biofilm was kept at the level of 43.7–65.5% of the corresponding indices for freshly isolated cells.
Probl Cryobiol Cryomed 2020; 30(3): 247–255
Библиографические ссылки
El-Kest SE, Marth EH. Freezing of Listeria monocytogenes and other microorganisms: a review. J Food Prot. 1992; 55(8):639-48. CrossRef
Fonseca F, Marin M, Morris GJ. Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol sus-pensions: freezing kinetics and storage temperature effects. Appl Environ Microbiol. 2006; 72(10):6474-82. CrossRef
Knysh OV. Bifidogenic properties of cell-free extracts derived from probiotic strains of Bifidobacterium bifidum and Lactobacillus reuteri. Regulatory Mechanisms in Biosystems. 2019; 10(1):124-8. CrossRef
Kwon YW, Bae J-H, Kim S-A, Han NS. Development of freeze-thaw tolerant Lactobacillus rhamnosus gg by adaptive laboratory evolution. Front Microbiol [Internet]. 2018 Nov 20 [cited 2020 May 15]; 9: 278 . Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2018.02781/full CrossRef
Lahtinen SJ, Gueimonde M, Ouwehand AC, et al. Probiotic bacteria may become dormant during storage. Appl Environ Microbiol. 2005; 71(3):1662-3. CrossRef
Mazur P. Freezing of living cells: mechanisms and implications. American Journal of Physiology Cell Physiology. 1984; 247(3): C125-C142. CrossRef
Novik G, Sidarenka A, Rakhuba D, Kolomiets E. Cryopreservation of bifidobacteria and bacteriophages in Belarusian collection of non-pathogenic microorganisms. Journal of Culture Collections. 2009; 6(1): 76-84.
O'Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol [Internet]. 2016 Jun 15 [cited 2020 May 15]; 7:925. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2016.00925/full CrossRef
Sarkar A, Mandal S. Bifidobacteria - insight into clinical outcomes and mechanisms of its probiotic action. Microbiological Research. 2016; 192:159-71. CrossRef
Shehadul Islam M, Aryasomayajula A, Selvaganapathy PR. A review on macroscale and microscale cell lysis methods. Micromachines (Basel) [Internet]. 2017 [cited 2020 May 15]; 8(3):83. Available from: https://www.mdpi.com/2072-666X/ 8/3/83/htm CrossRef
Singh A, Vishwakarma V, Singhal B. Metabiotics: the functional metabolic signatures of probiotics: current state-of-art and future research priorities - metabiotics: probiotics effector molecules. Advances in Bioscience and Biotechnology. 2018; 9(4):147-89. CrossRef
Speranza B, Liso A, Corbo MR. Use of design of experiments to optimize the production of microbial probiotic biofilms. Peer J [Internet]. 2018 Jul 10 [cited 2020 May 15]; 6:e4826. Available from: https://peerj.com/articles/4826/ CrossRef
Suez J, Elinav E. The path towards microbiome-based metabolite treatment. Nature Microbiology [Internet]. 2017 May 25 [cited 2020 May 15]; 2: 17075. Available from: https://www. nature.com/articles/nmicrobiol201775 CrossRef
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2020 Oksana V. Knysh, Oleksandr V. Pakhomov, Antonina M. Kompaniets, Valentina P. Polianska, Svitlana V. Zachepylo
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, публикующие в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).