Therapeutic Hypothermia and Cell Therapy Change Cognitive Functions of Spontaneously Hypertensive Rats
DOI:
https://doi.org/10.15407/cryo33.03.201Ключевые слова:
spontaneously hypertensive rats, rhythmic craniocerebral hypothermia, cryopreserved cord blood nucleated cells, cognitive functions, spatial memory, learningАннотация
Probl Cryobiol Cryomed 2023; 33(3): 201–211
Библиографические ссылки
Adriani W, Caprioli A, Granstrem O, et al. The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev. 2003; 27(7):639-51.
Aidarova VS, Babiichuk VG, Kudokotseva OV, et al. Experimental substantiation of therapeutic hypothermia and cell therapy application at dyscirculatory encephalopathy in SHR rats. Part 1. Spontaneously hypertensive SHR rats as a model of dyscirculatory encephalopathy. Probl Cryobiol Cryomed. 2018; 28(3): 224-36.
Aidarova VS, Babiichuk VG, Kudokotseva OV, et al. Experimental substantiation of therapeutic hypothermia and cell therapy application at dyscirculatory encephalopathy in SHR rats. Part 2. Structural changes in brain tissue. Probl Cryobiol Cryomed. 2019; 29(1): 58-72.
Aidarova VS, Kudokotseva OV, Lomakin II, Babijchuk GA. Applications of cord blood cells in neurology. Probl Cryobiol Cryomed. 2016; 26(2): 103-15.
Aidarova VS, Babijchuk VG, Lomakin II, et al. The effect of cryopreserved cord blood nucleated cells on pathological processes in the progressive aging of the brain (experimental study). Adv Gerontol. 2018; 8(4): 292-7.
Aidarova VS, Naumova OV, Kudokotseva OV, et al. [Brain structure of SHR rats with genetically determined arterial hypertension]. World of Medicine and Biology. 2018; 64(2): 115-9. Russian.
Amenta F, Di Tullio MA, Tomassoni D. Arterial hypertension and brain damage evidence from animal models (review). Clin Exp Hypertens. 2003; 25(6): 359-80.
Aparicio CF, Hennigan PJ, Mulligan LJ, Alonso-Alvarez B. Spontaneously hypertensive (SHR) rats choose more impulsively than Wistar-Kyoto (WKY) rats on a delay discounting task. Behav. Brain Res. 2019; 364: 480-93.
Aronow WS. Hypertension and cognitive impairment. Ann Transl Med. [Internet]. 2017 [cited 2022 May 5]; 5(12): 259. Available from: https://atm.amegroups.org/article/view/14511/html
Babiychuk V, Aidarova V, Lomakin I, et al. Influence of hypothermia and cell therapy on structural changes in brain tissues of rats with dyscirculatory encephalopathy of mixed genesis. Probl Cryobiol Cryomed. 2021; 31(2): 151-60.
Babijchuk GA, Marchenko VS, Lomakin II, Belostotskiy AV. [Neurophysiological processes of cooled brain]. Kyiv: Naukova dumka; 1992. 208 p. Russian.
Ben Shabat M, Eliya O, Azrilin O, et al. New cortical neurodegenerative pathways in the hypertensive rat brain. Cerebral Cortex. 2021; 31(12): 5487-96.
Bick SK, Eskandar EN. Neuromodulation for restoring memory. Neurosurg Focus [Internet]. 2016 May [cited 2022 May 12]; 40(5): E5. Available from: https://thejns.org/focus/view/journals/neurosurg-focus/40/5/article-pE5.xml
Canavan M, O'Donnell MJ. Hypertension and cognitive impairment: A review of mechanisms and key concepts. Front Neurol. [Internet]. 2022 Feb 4 [cited 2023 Feb 20]; 13:821135. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2022.821135/full
Chen N, Hudson JE, Walczak P. et al. Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells. 2005; 23(10): 1560-70.
Chernyuk DP, Bol'shakova AV, Vlasova OL, et al. Possibilities and prospects of the behavioral test «Morris water maze». J Evol Biochem Phys. 2021; (57): 289-303.
Coca A. Hypertension and brain damage. New York: Springer; 2016. 329 p.
De Deyn PP, Dam DV, editors. Animal models of dementia. NY: Humana Press; 2011. 732 р.
Del Pinto R, Grassi D, Bocale R, et al. Blood pressure profiles and cognitive function from adulthood to old age: chasing a golden middle way? J Clin Med. [Internet]. 2021 Jul 23 [cited 2023 Feb 21]; 10(15): 3243. Available from: https://www.mdpi.com/2077-0383/10/15/3243
Farokhi-Sisakht F, Sadigh-Eteghad S, Mohaddes G, et al. Physical and cognitive training attenuate hippocampal ischemia-induced memory impairments in rat. Brain Res Bull. 2020; 155: 202-10.
Kempermann G. Adult neurogenesis, stem cells and neuronal development in brain. Oxford: University. Press; 2005. 546 p.
Kulikov AV, Fursenko DV, Khotskin NV, et al. Spatial learning in the Morris water maze in mice genetically different in the predisposition to catalepsy: the effect of intraventricular treatment with brain-derived neurotrophic factor. Pharmacol. Biochem. Behav. 2014; 122: 266-72.
Lissner LJ, Wartchow KM, Toniazzo AP, et al. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol Biochem Behav. [Internet]. 2021 Sep 16 [cited 2022 Dec 4]; 210: 173273. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0091305721001726
McDonald C, Pearce MS, Kerr SR, et al. Blood pressure variability and cognitive decline in older people: a 5-year longitudinal study. J Hypertens. 2017; 35:140-7.
Mishchenko LA, Gulkevich OV, Revenko IL. [Cognitive disorders against the background of arterial hypertension: features and ways of correction]. Medychna Gazeta "Zdorovya Ukrainy 21 storichchia". 2020; (2): 40-3. Ukrainian.
Moraes NC, Muela HCS, MemOria CM, et al. Systemic arterial hypertension and cognition in adults: effects on executive functioning. Arq Neuropsiquiatr. 2020; 78(7): 412-8.
Ou Y-N, Tan C-C, Shen X-N, et al. Blood pressure and risks of cognitive impairment and dementia. Hypertension. 2020; (76): 217-25.
Paczkowska E, Kaczyńska K, Pius-Sadowska E, et al. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders. PLoS One. [Internet]. 2013 Dec 31 [cited 2022 May 12]; 8(12): e83833. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083833
Reckelhoff JF, Yanes Cardozo LL, Fortepiani MLA. Models of hypertension in aging. In: Ram JL, Conn PM, editors. Conn's handbook of models for human aging (2nd edition). Elsevier; 2018. p. 703-20.
Skibchyk VA, Peleshko OS. [Cognitive impairment in patients with arterial hypertension: literature review and personal experience]. Ukrainian Medical Journal. 2019; (3): 1-4. Ukrainian.
Ungvari Z, Toth P, Tarantini S, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol. 2021; 17(10): 639-54.
Vorhees C, Williams M. Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies. Neurotoxicology and Teratology. 2014; 45: 75-90.
Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr Hypertens Rep. [Internet]. 2017 [cited 2022 May 5]; Mar 19(3): 24. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164165/
Whiting MD, Kokiko-Cochran ON. Assessment of cognitive function in the water maze task: maximizing data collection and analysis in animal models of brain injury. In: Kobeissy F, Dixon C, Hayes R, Mondello S, editors. Injury models of the central nervous system. Book series: Methods in Molecular Biology, Vol. 1462. New York: Humana; 2016. p. 553-71.
Yen PSY, Liu YC, Chu CH, et al. Upregulation of glutamatergic receptors in hippocampus and locomotor hyperactivity in aged spontaneous hypertensive rat. Cell Mol Neurobiol. [Internet]. 2022 [cited 2022 May 12]; 42: 2205-17. Available from: https://link.springer.com/article/10.1007/s10571-021-01094-3
Zhang P, Fang H, Lou C, et al. Enhanced glial reaction and altered neuronal nitric oxide synthase are implicated in attention deficit hyperactivity disorder. Front Cell Dev Biol. [Internet]. 2022 Jun 21 [cited 2022 May 5]; 10: 901093. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255429/
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Olga V. Kudokotseva, Ivan I. Lomakin, Vladyslav G. Babiichuk, Liudmyla V. Babiichuk, Igor V. Kandybko
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, публикующие в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).