Impact of Bacterization with Anabaena flos-aquae and Pseudomonas putida and Salicylic Acid Treatment on Cold Resistance in Leguminous Plants

Авторы

Ключевые слова:

bacterization, salicylic acid, cold stress, cold resistance of plants, Pisum sativum, Phaseolus vulgaris

Аннотация

Probl Cryobiol Cryomed 2024; 34(2):125–142

Библиографические ссылки

Abo-Shady AM, Osman MEH, Gaafar RM, et al. Cyanobacteria as a valuable natural resource for improved agriculture, environment, and plant protection. Water Air Soil Pollut. 2023 May 4 [cited 2024 Jul 24]; 234(5): 313. Available from: https://link.springer.com/article/10.1007/s11270-023-06331-7 CrossRef

Acuña-Rodríguez IS, Newsham KK, Gundel PE, et al. Functional roles of microbial symbionts in plant cold tolerance. Ecol Lett. 2020; 23(6): 1034-48. CrossRef

Alvarez AL, Weyers SL, Goemann HM, Peyton BM, Gardner RD. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research. 2021 Feb 9 [cited 2024 Jul 24]; 54: 102200. Available from: https://www.sciencedirect.com/science/article/abs/pii/S2211926421000199 CrossRef

Atramentova LO, Utevska OM. [Statistical methods in biology]. Kharkiv: V.N. Karazin Kharkiv National University; 2007. 288 p. Ukrainian.

Bhat KA, Mahajan R, Pakhtoon MM, et al. Low temperature stress tolerance: An insight into the omics approaches for legume crops. Front Plant Sci. 2022 Jun 3 [cited 2024 Jul 24]; 13: 888710. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204169/ CrossRef

Chauhan M, Kimothi A, Sharma A, et al. Cold adapted Pseudomonas: ecology to biotechnology. Front Microbiol. 2023 Jul 17 [cited 2024 Jul 24]; 14: 1218708. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1218708/full CrossRef

Deshmukh AJ, Jaiman RS, Bambharolia RP, et al. Seed biopriming-a review. Int J Econ Plants. 2020; 7(1): 38-43. CrossRef

Hasanuzzaman M, Fujita M, Oku H, Islam MT, editors. Plant tolerance to environmental stress: Role of phytoprotectants. Boca Raton: CRC Press; 2019. 468 p. CrossRef

Jankovska-Bortkevič E, Katerova Z, Todorova D, et al. Effects of auxin-type plant growth regulators and cold stress on the endogenous polyamines in pea plants. Horticulturae. 2023 Feb 10 [cited 2024 Jul 24]; 9(2): 244. Available from: https://www.mdpi.com/2311-7524/9/2/244 CrossRef

Kazemi-Shahandashti SS, Maali-Amiri R. Global insights of protein responses to cold stress in plants: Signaling, defence, and degradation. J Plant Physiol. 2018; 226: 123-35. CrossRef

Keskin SO, Ali TM, Ahmed J, et al. Physico‐chemical and functional properties of legume protein, starch, and dietary fiber-A review. Legume Science. 2022 Mar 16 [cited 2024 Jul 24]; 4(1): e117. Available from: https://onlinelibrary.wiley.com/doi/10.1002/leg3.117 CrossRef

Kollmen J, Strieth D. The beneficial effects of cyanobacterial co-culture on plant growth. Life (Basel). 2022 Jan 31 [cited 2024 Jul 24]; 12(2): 223. Available from: https://www.mdpi.com/2075-1729/12/2/223 CrossRef

Kolupaev YuE, Yastreb TO, Shkliarevskyi MA, et al. [Salicylic acid: synthesis and stress-protective effects in plants]. The bulletin of Kharkiv national agrarian university. Series biology. 2021; (2): 6-22. Ukrainian. CrossRef

Koo YM, Heo AY, Choi HW. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol J. 2020; 36(1): 1-10. CrossRef

Kumar M, Poonam Ahmad S, Singh RP. Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus. 2022 Sep 1 [cited 2024 Jul 24]; 7: 100133. Available from: https://www.sciencedirect.com/science/article/pii/S2772427122000882 CrossRef

Kumar S, Jeevaraj T, Yunus MH, et al. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. Plant Cell Environ. 2023; 46(1): 5-22. CrossRef

Kushwaha P, Kashyap PL, Kuppusamy P. Microbes for cold stress resistance in plants: mechanism, opportunities, and challenges. In: Goel R, Soni R, Suyal D, editors. Microbiological Advancements for Higher Altitude Agro-Ecosystems and Sustainability. (Rhizosphere Biology). Singapore: Springer; 2020. p. 269-92. CrossRef

Lone AA, Khan MN, Gul A, et al. Common beans and abiotic stress challenges. Curr J Appl Sci Technol. 2021; 40(14): 41-53. CrossRef

Ma H, Liu M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants. Mol Biol Rep. 2019; 46(5): 5603-8. CrossRef

Mishra PK, Bisht SC, Ruwari P, et al. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonas from NW Himalayas. Arch Microbiol. 2011; 193(7): 497-513. CrossRef

Morcillo RJL, Manzanera M. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites. 2021 May 24 [cited 2024 Jul 24]; 11(6): 337. Available from: https://www.mdpi.com/2218-1989/11/6/337 CrossRef

Qian D, Xiang Y. Actin cytoskeleton as actor in upstream and downstream of calcium signaling in plant cells. Int J Mol Sci. 2019 Mar 20 [cited 2024 Jul 24]; 20(6): 1403. Available from: https://www.mdpi.com/1422-0067/20/6/1403 CrossRef

Rais A, Jabeen Z, Shair F, et al. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One. 2017 Nov 21 [cited 2024 Jul 24]; 12(11): e0187412. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187412 CrossRef

Rawat N, Singla-Pareek SL, Pareek A. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol Plant. 2021; 171(4): 653-76. CrossRef

Saijo Y, Loo EP. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 2020; 225(1): 87-104. CrossRef

Shevchuk OA, Kravchuk GI, Vergelis VI, et al. [The effect of stimulant drugs on the morphometric indicators of seedlings and sowing qualities of bean seeds]. Agriculture and forestry. 2019; (12): 225-32. Ukrainian.

Solomon W, Mutum L, Janda T, et al. Potential benefit of microalgae and their interaction with bacteria to sustainable crop production. Plant Growth Regul. 2023; 101: 53-65. CrossRef

Soualiou S, Duan F, Li X, et al. Crop production under cold stress: An understanding of plant responses, acclimation processes, and management strategies. Plant Physiol Biochem. 2022; 190: 47-61. CrossRef

Sun D, Zhuo T, Hu X, et al. Identification of a Pseudomonas putida as biocontrol agent for tomato bacterial wilt disease. Biological Control. 2017; 114: 45-50. CrossRef

Takács G, Stirk WA, Gergely I, et al. Biostimulating effects of the cyanobacterium Nostoc piscinale on winter wheat in field experiments. S Afr J Bot. 2019; 126: 99-106. CrossRef

Zboralski A, Filion M. Pseudomonas spp. can help plants face climate change. Front Microbiol. 2023 Jun 23 [cited 2024 Jul 24]; 14: 1198131. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1198131/full CrossRef

Zhang S. Recent advances of polyphenol oxidases in plants. Molecules. 2023 Feb 25 [cited 2024 Jul 24]; 28(5): 2158. Available from: https://www.mdpi.com/1420-3049/28/5/2158 CrossRef

Загрузки

Опубликован

2024-11-15

Как цитировать

Vinnikova, O., Drofa, A., & Raievska, I. (2024). Impact of Bacterization with Anabaena flos-aquae and Pseudomonas putida and Salicylic Acid Treatment on Cold Resistance in Leguminous Plants. Проблемы криобиологии и криомедицины, 34(2), 125–142. извлечено от https://journal.cryo.org.ua/index.php/probl-cryobiol-cryomed/article/view/1978

Выпуск

Раздел

Теоретическая и экспериментальная криобиология